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Electromagnetic field in rotational coordinates 
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Abstract. It is shown that in a rotational coordinate system the elementary solutions of 
Maxwell's equations can be derived from two scalar functions. 

These two functions are the azimuthal (angular) components E+ and H+ of an 
electromagnetic field and satisfy a differential equation of fourth order, which in particular 
cases can be factorized. 

This result follows from a theorem which states that in a wide class of rotational 
coordinates the azimuthal component F+ satisfies the following differential equation: 

( 2-'h:(A+k2 - 

if the field F satisfies the vector Helmholtz equation. 

1. Introduction 

It is known that the theory of the vector Helmholtz (VH) equation in a curvilinear 
orthogonal coordinate system is more complicated than the theory of the scalar 
Helmholtz (SH) equation since the breaking of a vector equation into scalar equations, 
each involving only one unknown curvilinear component leads to higher-order 
differential equations which are difficult to handle (Morse and Feshbach 1953, p 1761). 

Therefore in electromagnetic theory, the most effective procedure, useful in 
principle in each coordinate system, starts from the Cartesian components of the 
electromagnetic field, which satisfy the SH equation. 

Other more elegant methods introduce potentials, particularly the Hertz potential, 
and sometimes they allow decomposition of the initial vector problem into independent 
scalar equations. 

Unfortunately, such a scalarization cannot always be effected even in those coordi- 
nate systems in which the SH equation is separable (Morse and Feshbach 1953, Moon 
and Spencer 196 1 , Przeidziecki 1960). 

However, there exists a wide class of orthogonal rotational coordinate systems in 
which the azimuthal components of the fields play an important role, 

In the present paper, we will show that in any system of this class: 
(i) if the vector field F satisfies the homogeneous VH equation, the azimuthal 

(angular) component F6 satisfies a fourth-order differential equation; 
(ii) if, furthermore, this azimuthal component F6 is in the form 

m m 
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then the coefficientsf, obviously also satisfy a fourth-order equation, which can now be 
factorized into two second-order equations which bear close resemblance to the SH 

equation. 
(iii) If the fields E" and H" also satisfy the Maxwell equations and the azimuthal 

components E,", H," are in the form fm e'"', h, e'"', respectively, then the other 
components of the fields E", H" can be derived from E,", H," (although, as a rule each 
field component is determined by both E," and H,"). 

Thus, the vector problem can be reduced to the scalar one. The properties of the 
coordinate systems in which (i)-(iii) hold will be specified in § 2. 

2. General geometrical properties 

We shall consider a three-dimensional, curvilinear, orthogonal coordinate system with 
the coordinates &, t2, t3, related to the Cartesian frame by the equations 

x = r(5'*,5'2) cos 6 3 ,  

Y = r(5'1,Tz) sin 5'3, 

z = z(5'1, 52), 

(2) 

i.e. it is obtained by the rotation of the two-dimensional orthogonal system tl, & about 
the z axis. The coordinate t3 is identified with the rotation angle 4 and sometimes we 
will write t3 = 4. 

We restrict our considerations only to such plane systems which represent confor- 
mal mappings + i t2  = g(r  +iz), where r and z are radial and longitudinal coordinates, 
respectively, in the cylindrical coordinate system. 

Fixing the z axis, let us denote by R the class of the rotational coordinate systems tl, 
12, t3 related to the Cartesian frame by (2), if tl and & are real and imaginary parts of 
some analytic function g(r  +iz).  

The circular cylinder, spherical, parabolic, prolate and oblate spheroidal, etc, 
coordinates belong to the class R, if independent variables 11, t2 are suitably chosen. 
This choice concerns only a proper scale of each coordinate (Morse and Feshbach 
1953, p 504). For instance in the spherical coordinates R, 0, CP it is sufficient to 
substitute = In R, 5 2  = $T - 0, as in this case r + iz = R sin 0 +iR cos 0 = 
exp[ln R + i ( i r  - O ) ]  = exp(& +it2). 

The coordinate systems which belong to R have some special properties, which are 
fundamental for our considerations. 

First of all, the scale factors defined as (Morse and Feshbach 1953, pp 24, 115) 

hi = g,, = [ ( X , i l 2  + ( Y . i ) 2  + ( ~ , i ) ~ I l / ~  (3) 

(where (, . .),i = a/a& i = 1, 2, 3) are 

hi = [ ( r , i ) 2  + ( z , ~ ) ~ ] ~ ' ~ ,  i = 1,2; h3 = r. (4) 
Moreover 

k l l 2  = (z,2)2; (r,2I2 = (Z,J2? ( 5 )  

hl = h2 = [ ( r ,1)2  + ( r , 2 ) 2 ] 1 / 2  = h. 

from analyticity of the conformal mapping t1 +i t2  = g(r  +iz), and 

(6) 
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It is also easy to check that 

Ahj = h i ' ;  (grad h3)2 = 1. 

825 

(7) 

3. The fourth-order equation 

To prove theorem (i), observe that in each system of the class R, the relation between 
the azimuthal and Cartesian components of a vector F is 

(8) 

(9) 

which in fact is the radial component of the same vector F in circular-cylinder 
coordinates. Applying the operator A = div grad to (8), we get 

AF, = -[sin 4 AF, +2(grad F,)(grad sin 4) +F, A sin 41 

F, = -F, sin 4 +Fy cos 4. 

F, = F, cos 4 + Fy sin 4, 
It is convenient also to employ an auxiliary function 

+[cos 4 My +2(grad F,)(grad cos 4) +F, A cos 41 
= -(k2+h;2)F,-2h;2(F,,, cosq5+Fy,, s in4) ,  (10) 

if F satisfies the VH equation, But, differentiating (8) and (9) we obtain 

F4,* = - FX,+ sin q5 + F,,, cos q5 - F,, (11) 

FrI4 = F,,, cos 4 + Fyl4 sin 4 + F,, (12) 

Q (F, 1 = - Fr.49 (13) 

Q = 2-'h :(A + k - h i2). (14) 

Q(F,) = F4.4. (15) 

therefore (10) becomes 

where Q denotes the differential operator 

Similarly (9), (12) and (8) yield 

Now, since none of the h, coefficients depend on 4, the operators Q and (. , .),, 
commute. Therefore, one can eliminate the auxiliary function F, to find 

In conclusion, if the field F satisfies the VH equation, the azimuthal component F, in 
any coordinate system of the class R satisfies the fourth-order partial differential 
equation (16). It is seen that F, also satisfies this equation. 

Since from general theory it follows only that field components satisfy a differential 
equation of an order not higher than six (Morse and Feshbach 1953, p 1761), the above 
result can be of some advantage. 

Further simplifications occur in some special cases. For example, if F4 is given by 
(11, then substituting (1) into (16), we find that 

Lm -1Lm +lfm = L m +  1 L m -  1fm = 0, (17) 
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where the operator L, is defined as 

L, = 2- 'h : (A2+k2-q2h i2 ) ,  

or 

~,(f) = e+'(Q +$)(f e',') q = 0, *l, * 2 ,  * . . , 
and A2 represents the first two terms of the Laplace operator in R coordinates, 

1 

Observe from (18) that 

L, = L- , ;  & - I =  I-,+,+ 2q ; q = 0, *1, *2, .  . . . (20) 
Let us now examine the solutions of (17). To this purpose let us denote by gz  the 

solutions of the equation 

Lm*lgZ= 0, with m an integer. (21) 

For fixed m, the second-order differential operators Lm*l can have discrete and/or 

If g Z ( s ) ,  s E Sm+l,  constitute the base in the space Tm*l of all solutions of (21), each 
continuous spectra Smkl. 

solution can be written as 

where the integration is over the spectrum Sm+l. 

which case we substitute 
Obviously, the integration is reduced to a sum in the case of a discrete spectrum in 

where the last term denotes the Dirac 6 function. 
It is evident from (20) that we can choose a set of solutions such that 

gTm=gZ and g k = g : - 2 .  (24) 

go+, g o ,  g: ,  g ; ,  g:, g:, * * ' * 

Therefore the set of the independent solutions may be written, for example, as 

( 2 5 )  

Thus equation (17) is satisfied either by the function fm in the form (22), where 
g:E Tmk1, or by the functions im, which are non-trivial solutions of the non- 
homogeneous equation 

where ym(s)  an arbitrary function, and g L E  Tm+,. 

homogeneous equation 
However, with the aid of (20) (m ZO), we see that just g :  satisfies the non- 

L , - l g ;  = 2 m g L .  ( 2 7 )  



Electromagnetic field in rotational coordinates 827 

From the comparison of (26) and (27) via (21), it appears that the functions im do 
not represent new independent solutions, but can be expressed by both the functions g c  
through (22). In this case g,,, would belong to T,,, 0 Tmw1. 

Indeed, let g: be bases in T,,, and suppose that for some ym = qm there exists a 
function gm which satisfies (26) but does not belong to I",,, 0 Tm-l .  

We define a new function ( m  # 0), 

U, = g, - (2m)-' Ism+l q m g ;  ds. 

By (27) and (26) it satisfies equation (21), i.e. 

Lm-lu, = Lm-l im - qmg; ds 0. I 
But, since the functions g ,  constitute a base in Tm-l ,  U, can be expressed as 

vmg, ds. 

Thus, taking into account (28), im must have a form 

=L 
g m  = lm-l vmg, ds + (2mI-l Ism + q m g ;  ds, 

in contrast to our previous assumption. Therefore any solution of the fourth-order 
equation (17) can be written in the form 

and the solution of (16) as 

F,"= f m  e"*. (33) 
Obviously, this conclusion is true if m # 0. 

The case m = 0 requires a separate discussion. It is shown in the appendix that one 
can interpret the functions gO(s) in (32) and (33) as (dg;/dm)m,o. However, if we 
intend to treat F+ as a component of a physical field (electric or magnetic) in a 
source-free region, these last functions must be rejected. 

So far, we have left essentially untouched the problem of how to find effectively the 
solutions of (21). 

However, observe that if a scalar function 

w, = W q ( 5 1 7 5 2 )  cis*, (34) 

Lqw, = 0, (35) 

satisfies the SH equation, w, is the solution of the equation 

where the operator L, is defined by (18). Comparing (35) with (21) we recognize that 
our desired functions g z  are de facto the solutions of (35) but with shifted indices. 

We find thus 

g z ( t 1 , 5 2 )  = W m * 1 ( 5 1 , 5 2 ) ,  (3 6) 
where w, satisfy the SH equation. 
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This is an effective technique for finding the solutions of (17) and (21), since the 

The elementary solutions of (16) are then 
whole theory of the SH equation may be applied immediately. 

F;= (1 a ~ w m C l  ds + ( Y , W , - ~  ds J (37) 

where w, are defined as above, and the complete solution of (16) is the sum (1). 
Obviously the boundary conditions, if imposed, determine the coefficients a L and 

a, as well as the spectrum over which the integration in (37) is performed. 
In 0 4 we will apply the formal procedure presented above to physical fields in a 

source-free region. Observe however, that the procedure can be applied also to 
potentials, but in this case the functions go cannot be neglected. 

4. The Maxwell equations in rotational coordinates 

We will consider now the solutions of the Maxwell equations 

curl E = ikH, curl H = - ikE (38) 

in the coordinates of class R. If the azimuthal field components E3, H3 are given by (l), 
we can easily express all other field components in terms of E3 and H3: 

ET = i(Mmh)-'[kh3(h3fG'),2 + m(h&?),iI, 

where M, = k2h:-m2, h is given by (6), and E r =  aE?/a5,. 
Relations (39) are often applied in the literature, but confined rather to some 

particular cases (e.g. Fock and Fedorov 1958, Ivanov 1968). 
By applying theorem (i) it is possible to construct functions E, and H, which are 

azimuthal components of vector fields satisfying the VH equation. E, will be given by 
(l), (37) and similarly 

%'= ( { P % ) g L ( s )  ds + l P & ) g ; ( s )  ds) e"'. (40) 

Let us remark that the fields E having a component E, which satisfies (16) constitute a 
wider class than the class of the solutions of the VH equation. The same conclusion 
applies also to the fields E,  H determined by E,, and Hm, through (39) and to the 
solutions of the Maxwell equations. Even if other field components are determined by 
(39), we must remember that there does not exist a priori any relationship between E, 
and H,, since both these functions are set independently as the solutions of (17). 

For establishing the required relationship and/or for choosing the appropriate 
solutions we must go back either to the Maxwell equations, or to the divergence 
equations. In this manner we will be able to determine the necessary relations between 
the a and P in (37) and (40). 
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Taking into account (7), after some re-arrangement we obtain the final formulae 

M,h;'Q(N?) - m '(h;'H?+grad H? . grad h3) + mkh3h-*(h3,1E:2 - h3,2ET1) = 0, 
(42) 

and (from curl, H = - ikE,) 

M,h5'Q(E~)-m2(h;'E?+grad E?. grad h3)-mkhsh-2(h3,1H;12-h3,2H3,1) = 0 
(43) 

where h is given by (6) ,  M, by (39), and the operator Q by (14). Equations (42) and 
(43) remove uncertainty in the determination of the azimuthal components E,, H+ and 
thus equations (39) can be used to obtain the complete solutions of the Maxwell 
equations in rotational coordinates. 

Whenever an electromagnetic field is derived from the two scalar functions, which 
represent the components of the electric and magnetic fields in the same direction, the 
problem of representation of the field in terms of m and TM waves is automatically 
raised. In our case, m or m fields would be defined with respect to the 4 direction 
(angularly transversal or azimuthally transversal). 

From (42) and (43) it can be seen that such a decomposition is impossible, unless 
m = 0. All coefficients a and p can vanish only simultaneously and consequently an 
electromagnetic field for m # 0 has all the six components (curvilinear). 

= p;(s)g:(s)  and 
E o  = cyo'(s)go'(s), respectively, ( g o  are excluded-see appendix). This result follows 
from the identity: 

(L+I + m)f ,  (44) 

However, if m = 0, equations (42) and (43) are satisfied by 

QV e*imd) = e*imd 

for arbitrary f = f ( t l ,  t2). 
Thus, if m = 0, an electromagnetic field can be derived only from one azimuthal 

component, either E, or H,, and consequently the fields of TM or m type with respect 
to the 4 direction can be set. 

To complete our discussion, observe that having a well defined azimuthal compo- 
nent E+, one can easily find E, as well as the Cartesian components E,, Ey ; this can be 
useful in some applications. 

5. Conclusions 

We have shown that in any rotational coordinate system belonging to class R because of 
the properties of the scale factors, the azimuthal component E, of any solution of the 
vector Helmholtz equation satisfies a partial differential equation of the fourth order. 

If this component depends on the 4 coordinate as e*im', the fourth-order equation 
can be factorized and, with one exception, its solutions can be expressed as linear 
combinations of the solutions of the factor equations. 
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Both second-order factor equations are of the same kind and are closely related to 
the scalar Helmholtz equation. 

Because of the important role played by the azimuthal coordinate, it is possible to 
derive all components of the electromagnetic field from the two scalar functions which 
are the solutions of the fourth-order equation already mentioned. 

If these solutions are properly chosen, they can be identified with the azimuthal 
components E,, and H, of the electromagnetic field and the calculation of the other 
components (curvilinear) is guaranteed by suitable formulae. 

Electromagnetic fields will possess as a rule all six curvilinear components. 
However, the TE and TM fields, with respect to the 4 direction, can also exist. 

Thus, we have shown that besides the z components in cylindrical coordinate 
systems, radial components in spherical coordinate systems, Cartesian components in 
rectangular coordinates and also the azimuthal components in any rotational coordi- 
nate system of class R permit the determination of effectively the whole electromagne- 
tic field from just two scalar functions; however, in general, these functions are not 
independent. 

Acknowledgment 

The author wishes to thank Dr S Lewandowski for helpful discussions and a careful 
reading of the manuscript. 

Appendix 

Let go'($), s E SO, represent a base in a space of the solutions of the equation 

Ldgo') = 0; (A. 1) 

this equation can be treated as a limiting case of 

lim L l + m ( g ; )  = 0. 
m-0 

Forgettingsubtleties, by differentiation of (A.2) with respect to m, and from (18), for 
m = 0, we have 

go=(&;) m = o  . (A.4) 

Observe that (A.3) is identical with (24). By (A.3), g&) is independent of g ; ( s )  and 
evidently it satisfies the equation 

G ( g 0 )  = 0. (44.5) 

Since for m = 0, both equations (21) reduce to (A. l) ,  we can just treat functions go as 
a second independent solution and denote eventually by go .  
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It is not difficult to show that go cannot represent an azimuthal component of an 
electromagnetic field but can only represent potential fields ( k  = 0). To prove this 
statement, note that by (44) and (A.3), the first term in (42) is 

Mh;'Q(go)=k2h3Q(go)=kZh3Li(go)= -k2h3gof #O, ('4.6) 
if k # 0, whereas all other terms in (42) vanish, since go does not depend on 4. 

Consequently, (42) and (43) are not satisfied and go must be excluded from the set of 
functions which represent the azimuthal components of a dynamical electromagnetic 
field in a source-free region. 
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